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A B S T R A C T

This study focused on the utility of coarse surface soil moisture observations for applications that require high
resolution surface soil moisture information. This was accomplished by quantifying the information content of
average soil moisture for three different spatial scales of 81 km2, 790 km2, and 4400 km2. In situ point ob-
servations of soil moisture from 31 stations in Iowa were used to develop a spatial stochastic model that assumes
hillslope-scale model parameters are independent. Soil moisture dry-downs and wetting regimes were analyzed
using rain gauge and soil moisture sensor data. The statistical nature of dry-downs were parameterized using a
power-law decay, and soil moisture increases due to rainfall were parameterized using a non-dimensional lo-
gistic curve that is a function of soil moisture deficit. The resulting stochastic model is used to quantify the
magnitude of the standard deviation, ( ), and skewness G ( ) as a function of the areal average. We show that
the greatest information content (small spatial standard deviation) of average observation corresponded to
values near the minimum or the maximum soil moisture with <( ) 5%, while average observations for in-
termediate soil moisture values had the lowest information content with >( ) 20%. The differences in in-
formation content as a function of the areal average were consistent with the statistical nature of soil moisture
that can be interpreted as small range bounded variable. However, this study provides quantitative estimates for
the magnitude of the sub-grid and basin scale variability, documenting the utility for applications that require
high resolution information. These results form the basis for the investigation of spatial runoff production in
response to rainfall and to inform plot scale agriculture applications.

1. Introduction

Surface soil moisture is a key state variable linking short-term and
long-term water and energy balances in the soil and the atmosphere
(Yang et al., 2016) and land-atmosphere interactions (Entekhabi et al.,
1996) that determine evaporation and evapotranspiration (Koster et al.,
2004), and surface runoff production leading to extreme flooding
(Grillakis et al., 2016). It also plays a major role in plant ecology, en-
vironmental biology (Orchard and Cook, 1983), and carbon cycle
through plant respiration (Boone et al., 1998).

The most common technique for field-scale soil moisture measure-
ment is using soil TDR (Time Domain Reflectometry) probes (Topp
et al., 1980; Romano, 2014). However, due to high spatial variability of
soil moisture in space (Western et al., 2004; Yang et al., 2017), using
this measurement technique is neither feasible nor practical for larger
spatial scales. Therefore, remote sensing techniques are being employed
as a more efficient alternative to track soil moisture in space and time.

NASA SMAP (Soil Moisture Active Passive) is the most recent satellite
mission to focus on global soil moisture observations (Entekhabi et al.,
2010) launched in 2015 that uses L-band (1.4 GHz) radiometer.

Satellite soil moisture estimations have coarse spatial resolution
(e.g. Enhanced SMAP L3 9 km) due to limitations in large antenna size
needed for L-band microwave measurements (Njoku and Entekhabi,
1996; Kerr, 2007). Therefore, understanding information content of the
satellite soil moisture and its spatial variability for sub-grid and basin
scales is essential for its hydrologic applications.

Several studies focused on characterization of the measured soil
moisture distribution and its spatial variability over time using field
observations (e.g. Famiglietti et al. (1997), Ryu and Famiglietti (1997),
Choi and Jacobs (2007), Brocca et al. (2012), Cho and Choi (2014)).
Rosenbaum et al. (2012) used 150 sensor observations to study soil
moisture spatial variability and showed that groundwater influenced
locations have higher spatial variability than other locations.
Famiglietti et al. (2008) analyzed the soil moisture spatial variability at
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spatial scales ranging from 800 (m) to 50 (km). Their analysis de-
monstrated that larger spatial extents have higher variability. Brocca
et al. (2014) compared variability of absolute soil moisture, degree of
saturation and soil moisture anomalies with respect to long-term mean
for 6 observation networks with areas ranging from 250 to
150,000 km2.

In addition to studies based on observations only, there have been
studies that used modeling approach to investigate soil moisture
variability. For example, Teuling and Troch (2005) used a soil moisture
balance model to estimate soil moisture variability in 3 different sites.
Controls of soil hydraulic properties, specifically van Genuchten-
Mualem parameters, on the relationship between soil moisture spatial
variability with its mean has been investigated by different studies (e.g.
García et al. (2014), Qu et al. (2015), Wang et al. (2015)). Zarlenga
et al. (2018) adopted a stochastic model of unsaturated flow to in-
vestigate the effects of a scaling triplet (spacing, extent and support
introduced by Andrew and Günter (1999)) on the soil moisture spatial
variability.

Chaney et al. (2015) used the TOPLATS model (Sivapalan et al.,
1987) to estimate watershed scale spatial variability of root-zone soil
moisture using fine scale ( 500 m) radar rainfall data. Application of
three dimensional hydrologic model for estimation of soil moisture
variability has also been investigated by Cornelissen et al. (2014) and
Gebler et al. (2017). Reported results from those two modeling studies
indicate underestimation of spatial variability from modeled soil
moisture compared to observations. For details on current status of soil
moisture spatio-temporal variability research, the reader is referred to
Section 3 of Brocca et al. (2017) and Section 8 in Babaeian et al. (2018).

In previous studies, soil moisture sensor observations play a key role
in understanding spatial and temporal variability of soil moisture and
evaluation of soil moisture estimations from model simulations. These
studies demonstrate the added value of field measurements of soil
moisture. The main objective of this study is to investigate soil moisture
variability within SMAP satellite sub-grid and basin spatial scales by
analyzing soil moisture sensor and rain gauge observations and using
higher resolution radar rainfall and soil properties to approximate
spatial statistics of surface soil moisture.

Section 2 describes the domains of study and data characteristics
that are used. Section 2.3, discusses the methodology for extraction of
the soil dry-downs and wetting phases, the parameterization of each
phase, and a description of the soil moisture model. In Results and
Discussion (Section 3), we compare stochastic model results with SMAP
and soil moisture sensor(s) for one SMAP pixel within each basin and at
the basin scale. Thereafter, we investigate the soil moisture spatial
statistics of the proposed model and compare it with field observations
and SMAP satellite soil moisture.

2. Materials and methods

2.1. Study area

Two watersheds (Fig. 1) located in Iowa are the focus of this study.
Iowa is located in a warm and humid continental climate zone (e.g. Peel
et al. (2007)) with an annual average precipitation of 870 mm
(1981–2010). The Turkey River basin is located at northeast Iowa and
has a drainage area of 4400 km2. It is approximately 56% cropland,
14% pasture, 13% of the basin is forested, and the remaining area is
grassland and developed. The South Fork basin is located in north-
central Iowa with a drainage area of 790 km2. Cropland dominates the
land cover with 88% of the total area. The main soil texture, based on
USDA classes, for the Turkey River and South Fork basins are silt-loam
and loam, respectively.

2.2. Data

2.2.1. Field measurements
Fig. 1 shows available soil moisture and rain gauges in the state of

Iowa, USA. At each site, 4 soil moisture sensors are installed at depths
of 5, 10, 20 and 50 cm. This study will focus on the 5 cm depth of soil
column at each site. The IFC (Iowa Flood Center) TDR probes are
Campbell CS655 (Campbell Scientific Inc., 2012) and the USDA-ARS
soil moisture sensors are Stevens Hydra probes (Stevens, 2018). Both
soil moisture sensors have a reported accuracy from ± 1 to ± 3% vo-
lumetric soil moisture. At each site, dual tipping bucket rain gauges are
collocated with the soil moisture sensors. It has been shown that dual
tipping bucket rain gauges for rainfall measurements increases the
measurement reliability (Ciach et al., 1999).

The temporal coverage of the soil moisture and rainfall data for
different sites is shown in Fig. 2. For quality control of soil moisture
data, we followed Dorigo et al. (2011) for detection of errors in soil
moisture time series. We applied a manual quality control on the soil
moisture sensor data. We removed the cold season time periods (No-
vember 1–March 31), highlighted as gray in Fig. 2, to avoid possible
erroneous soil moisture readings due to frozen top soil layer. Also, we
used rainfall data from two tipping bucket rain gauges at each site to
check the soil moisture time series. If there was rainfall more than 5 mm
and soil moisture did not increase during a 24-h period, we avoided
using the data. We did not remove temperature-related diurnal fluc-
tuations in soil moisture because these fluctuations are within the
specified accuracy of sensors.

2.2.2. Radar rainfall & satellite soil moisture
For rainfall, we used MRMS (Multi Radar Multi Sensor), a rain

gauge bias-corrected radar rainfall product (Zhang et al., 2016) that has
approximately a 1-km resolution. We employed hourly rainfall from
April to November 2016 as forcing for estimation of the soil moisture
for each hillslope which is discussed in the Section 2.3.3.

Enhanced Level 3 Version 1 (hereafter L3) SMAP (Chaubell et al.,
2016) soil moisture product has approximately 9 km resolution with
global revisit time of 2–3 days. SMAP soil moisture estimations are
provided by NASA on EASE-Grid 2 (hereafter SMAP grid). There are 21
and 73 SMAP pixels that intersect with South Fork and Turkey River
basins, respectively. We use SMAP soil moisture for comparisons with
sensor observations and simulated hillslope soil moisture.

2.2.3. Soil properties
Two soil properties used in this study are porosity and residual soil

moisture. These two values, for 0–5 cm soil layer, were obtained from
the POLARIS soil properties database, which is a probabilistic soil series
map for the contiguous United States and has a 30 (m) spatial resolution
(Chaney et al., 2016).

2.3. Methods

Field-scale soil moisture dynamics could be classified into two
phases. Soil moisture dry-down that is due to drainage and evapora-
tion/evapotranspiration while soil wetting is due to rainfall and/or ir-
rigation, noting that most of the agricultural fields in Iowa are rain-fed.

We analyzed the soil moisture dry-downs and wetting phases of soil
moisture time series. Then, we parameterized these two phases and
used the distributions of parameters for estimation of the hillslope
surface soil moisture forced with MRMS rainfall.

2.3.1. Dry-down periods
The dry-down time periods of surface soil moisture were identified

using local minimum and maximums of the soil moisture time series. A
threshold peak prominence value of 0.02 (m /m3 3) was used and the dry-
down curves that last at least 12 h were selected. Also, dry-downs with
more than 2 mm accumulated rainfall were excluded from the analysis.

N. Jadidoleslam, et al. Journal of Hydrology 576 (2019) 85–97

86



Consequently, 2352 dry-down events are employed in the study.
Rondinelli et al. (2015) and Shellito et al. (2016) used an ex-

ponential equation with different mathematical forms for fitting the soil
moisture dry-down curves using 3 parameters. For this study, we se-
lected a power-law model with two parameters for fitting the dry-down
curves, to improve flexibility and to decrease the number of parameters
required,

= + +SM SM SM t SM( )[( 1)( ( ) 1)]t r r
1

1 (1)

where SM is soil moisture at the initiation of dry-down, SMt is soil
moisture at any time t elapsed from the dry-down initiation and
SMr is residual soil moisture, which is assumed as minimum soil
moisture of the time series.

Eq. (1) is fitted to extracted dry-down curves from soil moisture
observations with a non-linear least square method to find and for
each dry-down curve. Fig. 4 shows the normalized dry-down curves

based on initial soil moisture of the dry-downs for IFC soil moisture
sensors with elapsed time (t ) in days. Each of the fitted curves have
different dry-down parameters ( , ). Fitted and observed dry-down
curves have a good agreement with an RMSE (root mean square error)
and coefficient of determination of 0.006 cm /cm3 3 and 0.95, respec-
tively.

2.3.2. Wetting phase
The total rainfall and magnitude of soil moisture increase during

rainfall events are found for each wetting time periods from soil
moisture time series. An example of these periods are highlighted as
blue in Fig. 3. Using a similar approach described in Section 2.3.1 with
an inter-event dry period of 2 h, we found positive soil moisture change
and total rainfall depth. We detected 4334 wetting periods across the
sensor histories.

Hardie et al. (2013) investigated soil moisture change with respect
to rainfall for 0–90 (cm) depths. They were able to find “weak but

Fig. 1. Locations of the stations used in this study for IFC (Iowa Flood Center) and ARS (Agricultural Research Service) stations shown in blue and green, respectively.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Temporal coverage for ARS (green) and IFC (blue) soil moisture-rain gauges used in this study. Shaded gray color indicate the time periods that are excluded
from the analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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significant relationship between the amount of precipitation and soil
moisture change”. In our study, we only used surface soil moisture
measurements (5 cm depth) and we normalized the magnitude of soil
moisture increase, over the wetting period, by soil moisture deficit
( SMi), defined as the difference between soil porosity and initial
soil moisture before initiation of the rainfall event. Furthermore, we
normalized total rainfall by the sensing depth of soil moisture sensor
and soil moisture deficit.

Fig. 5 shows the non-dimensional deficit-normalized soil moisture
increase with respect to deficit-normalized rainfall over wetting periods
for all of the stations in this study. Each point demonstrates what per-
centage of available space at top layer soil is filled up by rainfall. Most
of the data points are close to one-to-one line while soil moisture
change is higher for higher magnitudes of deficit-normalized rainfall. In
the case of an ideal bucket model, one may expect that deficit-nor-
malized soil moisture increase of surface soil layer should correspond
with deficit-normalized rainfall magnitudes. In other words,

=
<SM SM

SM

if 1

1 if 1.
f i

i

P
SM d

P
SM d

P
SM d

( ) ( )

( )

i sv i sv

i sv

Our data analysis shows that there is uncertainty in soil moisture
change with respect to rainfall. There are different factors that could be
contributing to the scattering of the data points in Fig. 5. Changes in soil

porosity, macropores and preferential flow (e.g. Beven and Germann
(1982)) could contribute to the scattering. Preferential flow can also
contribute to larger deficit-normalized soil moisture increase than
deficit-normalized rainfall magnitude, which is neglected in our study
due to insignificant instances of these events.

Investigating the effect of above-mentioned factors on soil moisture
change has its own challenges (Guo et al., 2018) and does not fit in the
scope of this study given the limitations of the available information
and temporal resolution of rainfall and soil moisture observations.
Nevertheless, it is important to account for these factors in hydrologic
modeling and the authors would like to express the need for further
research.

An asymptotic equation (Eq. (2)) with one parameter ( ) is chosen
to solve for each point shown in Fig. 5,

= +
+ ( )

SM SM
1

f i

P
d

P
d SM( )

1/
sv

sv i (2)

where P is the total rainfall depth over the wetting period, is soil
porosity assumed as maximum soil moisture of the observations at each
station, dsv is effective depth of sensing volume for the soil moisture
sensors used in this study, which is approximately 75 mm. SMi and SMf
are soil moisture before and after the soil moisture wetting event, also
shown as black circles and black dots in Fig. 3, respectively. Solving Eq.

Fig. 3. Example rainfall and soil moisture observa-
tions (black) for wetting (blue), drying periods
(gray) and dry-down fitted curves (red). Black dots
and circles correspond to soil moisture before and
after rainfall event. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Measured (left) and fitted (right) soil dry-down curves for IFC soil moisture sensors at 5 cm depth.
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(2) for each point in Fig. 5 gives different values for which its dis-
tribution is shown in Fig. 5. We note that, the functional form in Eq. (2)
imposes a constraint on the soil moisture increase to be less than or
equal to its deficit.

We investigated a possible relationship between the dry-down curve
parameters ( and ) and geophysical attributes of each site including
soil temperature, soil texture, slope. We could not find any clear and
distinct relationship between soil moisture dry-down parameters ( , )
and these attributes. However, we found similarity in normalized dry-
down rates but also significant variability in normalized soil moisture
(SM SM/ ) dry-downs for concurrent dry-downs across stations.

2.3.3. Numerical modeling
A surface soil moisture time series was generated based on Eq. (1)

and Eq. (2). We note that, the fitted dry-down parameters are discrete
in time because we only have one pair of and for a single dry-down
curve. Therefore, to have sufficient number of parameter samples and
to account for variability of dry-down parameters in different time of
year, a soil moisture dry-down is generated, right after cessation of
rainfall, as follows: First, we select the dry-down parameters that are
within a 40-day time window ( ± 20 days) of dry-down initiation time

(or rainfall cessation time), denoted as in Eq. (1). Then, we construct
non-parametric distributions, from which we sample and . Finally,
by plugging sampled parameters into Eq. (1), we estimate the soil
moisture dry-down until the next rainfall initiation time.

Note that as it is shown in Eq. (1), a soil moisture dry-down only
depends on the initial soil moisture of the dry-down (SM ) which is
calculated from a previous wetting, residual soil moisture (SMr) from
POLARIS database, and and which are randomly sampled for each
dry-down as described above.

For soil moisture wetting, during a rainfall event, we randomized
the soil moisture response to each pulse of rainfall. First, we sample
from the distribution of wetting phase parameter ( ) shown in Fig. 5.
Then, we calculate the soil moisture change by plugging the sampled
into Eq. (2) while the initial soil moisture SMi is already calculated
either from the final value of a dry-down or soil moisture of the pre-
vious time step of a wetting. We repeat this procedure until rainfall
ends. We use hourly MRMS rainfall at each hillslope by calculating the
area-weighted average rainfall of the contributing MRMS pixels.

The initial soil moisture of the hillslopes on April 1st 2016 were
generated randomly with a uniform distribution ranging from residual
saturation to soil porosity.

Fig. 5. Deficit-normalized soil moisture increase and deficit-normalized rainfall for wetting periods across all soil moisture sensors for 5-cm depth. Examples of the
fits with 3 different values are shown with dashed line. Right corner: Distribution of the fitted soil moisture wetting parameter ( ).

Fig. 6. SMAP pixel ( ×9 km 9 km), MRMS grid ( ×1 km 1 km) and corresponding hillslopes within one SMAP grid with median area of 0.3 km2.
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Simulations are conducted for each basin separately with their
corresponding calculated parameters. We note that, Turkey River and
South Fork basins have approximately 10,800 and 1800 hillslopes, re-
spectively. Fig. 6 shows a schematic of one SMAP pixel, intersecting
MRMS rainfall grid and hillslopes. Each SMAP grid consists of ap-
proximately 100 MRMS grids and more than 300 hillslopes.

Normalized soil moisture standard deviation and skewness are
compared with its mean for model and sensor observations. Also, these
three statistics are calculated for SMAP soil moisture and upscaled
model soil moisture over Turkey River basin. For upscaling the model
soil moisture to SMAP pixel resolution, spatial mean of normalized
model soil moisture is calculated for hillslopes that are within SMAP
pixel. Thereafter, upscaled model soil moisture time series is subset,
over time, by using the matching timestamps of SMAP satellite over-
pass.

The differences in spatial variability of absolute soil moisture and
normalized soil moisture (degree of saturation) is shown by Brocca
et al. (2014). Hence, for spatial statistics (mean, standard deviation and
skewness) of sensor observations, model and SMAP soil moisture, we
used normalized soil moisture or effective saturation, defined as

= SM SM
SM

r

r (3)

where is normalized soil moisture (degree of saturation) that changes
from 0 to 1, SM is volumetric water content that can change between
residual soil moisture (SMr) and soil porosity ( ). For sensor observa-
tions, we used minimum and maximum soil moisture of the sensor
history as porosity and residual soil moisture, respectively. For nor-
malization of model soil moisture and SMAP soil moisture, we used
POLARIS soil porosity and residual soil moisture.

For the sake of completeness, definitions of mean, standard devia-
tion and skewness are given in Eqs. (4)–(6).
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where N is the number of hillslopes, i is normalized soil moisture at i-th
hillslope and E [ ] is the mean soil moisture of the hillslopes.

It is important to highlight that the independence of point scale
model parameters does not imply independence of the time series that
are generated. A strong correlation between sites is maintained because
spatial patterns of precipitation are correlated.

3. Results and discussions

3.1. SMAP sub-grid soil moisture

Soil moisture estimates for one SMAP pixel inside Turkey River and
South Fork basins are shown in Figs. 7 and 8, respectively. We selected
SMAP pixels that contain at least one soil moisture sensor which are
highlighted with red color in these figures. Longitude and latitude of
the centroid for SMAP pixel in Turkey River basin and South Fork are
−91.4680, 42.7813 and −93.4537, 42.4914 (decimal degrees), re-
spectively. The top panel shows hourly MRMS rainfall averaged over
hillslopes within one SMAP pixel. The color scale shows the soil
moisture probability of occurrence (p SM( )) inside the SMAP grid for
April-November 2016. Descending and ascending swaths of the SMAP
satellite are shown with downward and upward triangles. Also, time
series of soil moisture sensor(s) collocated with SMAP pixel is shown in

black line.
For SMAP pixels within each basin, soil moisture from SMAP and in

situ stations were inside the range of modeled soil moisture. Higher
rainfall magnitudes tended to increase the probability of higher soil
moisture within SMAP pixel from model. Overall, SMAP soil moisture
wettings and dry-downs agreed with the model and sensor. However,
generally SMAP soil moisture estimations are lower than other two.
More specifically, SMAP soil moisture is drier than sensor and model
soil moisture from June to September.

3.2. Basin-scale soil moisture

Figs. 9 and 10, from top to bottom panel, show basin-averaged
hourly rainfall from the MRMS product, simulated soil moisture prob-
ability of occurrence over time with median soil moisture of all of the
hillslopes within each basin (red line), the corresponding SMAP soil
moisture as box plots with dark and light gray colors, referring to AM
and PM swaths of SMAP satellite and time series of soil moisture ob-
servations inside each basin. The maximum number of sensors used for
Turkey River basin and South Fork are 15 and 16, respectively.

There was good agreement between sensor observations and simu-
lated time series of soil moisture where sensor observations are within
the range of simulated soil moisture for the two basins. In few cases,
specifically for South Fork, sensor observations exceeded the saturation
level of the model that could be originating from either flow accumu-
lation at soil moisture sensor location or lower soil porosity used in the
model.

SMAP soil moisture observations lie inside the simulated range.
However, there are moments in time where SMAP estimations are lower
than residual saturation. More specifically, SMAP soil moisture for
South Fork basin exhibited lower soil moisture values than the residual
saturation for June-August 2016. This could be due to the vegetation
growing season in Iowa, where L-band radiometric sensitivity to ve-
getation water content (VWC) increases that conversely decreases
sensitivity to soil moisture (Neelam and Mohanty, 2015). Spatial
variability of SMAP soil moisture for South Fork was less than Turkey
River due to the smaller watershed area and thus fewer SMAP pixels.

SMAP soil moisture estimates tend to dry-down faster than esti-
mated soil moisture of the hillslopes which is consistent with the study
on the SMAP moisture dry-down rates (Shellito et al., 2016) and an
overall assessment of SMAP soil moisture products (Chan et al., 2016).
Chen et al. (2018) speculated that underestimation in auxiliary surface
temperature of SMAP could be one of the contributors to dry-bias of
SMAP soil moisture estimates.

3.3. Standard deviation and skewness

Hourly standard deviation with respect to mean of normalized
model and observed soil moisture for Turkey River and South Fork are
shown in Fig. 11. Standard deviation is maximum in the intermediate
range of soil moisture, while it is lower for low and high soil moisture
mean values. The overall trend and dynamic range for the mean and
standard deviation of observed soil moisture is captured by the model.

For Turkey River basin, the standard deviation of the modeled and
observed soil moisture for wet conditions was lower than dry condi-
tions, while for South Fork basin, the lower limits of standard deviation
for wet and dry conditions had similar values. For the time period of our
study, maximum standard deviation of observed soil moisture for
Turkey River basin (Fig. 11a) is 0.29 cm /cm3 3 with mean value of
0.54 cm /cm3 3 whereas the peak standard deviation of observations for
South Fork (Fig. 11b) is approximately 0.30 cm /cm3 3 at mean soil
moisture of 0.35 cm /cm3 3.

Soil moisture variability results by Gebler et al. (2017) using hy-
drologic model were lower than the observed soil moisture spatial
variability because of uniform atmospheric forcing (e.g. rainfall) and
vegetation over their study domain. Modeled soil moisture variability
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results from Cornelissen et al. (2014) also showed an underestimation
compared to observations due to homogeneous rainfall forcing. In
contrast to these two studies, our model results for soil moisture
variability are slightly higher than observations which can be attributed
to rainfall variability in space.

Fig. 12 shows changes of skewness with mean soil moisture for
Turkey River and South Fork basins, respectively. Soil moisture skew-
ness of the model and observations show good agreement for both
watersheds. The distribution is negatively skewed for wet conditions
while skewness becomes positive for dry conditions. This result is in the
same line with conclusions by Famiglietti et al. (2008).

While general patterns of standard deviation and skewness with
respect to mean are captured by the proposed model, there are differ-
ences in modeled and observed normalized soil moisture statistics with
respect to its mean. One reason for this difference could be due to
normalization of observations by using maximum and minimum of the
soil moisture sensor history as porosity and residual soil moisture.

Note that, the number of hillslopes (sample size) for which the
statistics are calculated in Figs. 11 and 12 is not same as the number of
sensor observations in these basins. Therefore, for comparisons between
observed and modeled soil moisture standard deviation and skewness,
same number of hillslopes as the number of sensor observations was
selected, randomly, inside each basin and statistics were calculated for
each group. Accordingly, Figs. 13 and 14 correspond to standard de-
viation and skewness of normalized soil moisture with respect to its
mean. These two figures show the statistics for groups of 15 and 16
hillslopes for Turkey River and South Fork basins. Dynamic range of the

statistics in these two figures, cover the standard deviation and skew-
ness of the soil moisture sensor observations within each basin. In
contrast to South Fork basin, modeled soil moisture standard deviations
reach zero for very wet conditions in Turkey River basin because of
high rainfall spatial extent. The range of observed soil moisture skew-
ness for Turkey River basin and South Fork are within the range of
ensemble skewness of the model. Turkey River basin is 6 times larger
than South Fork, therefore the range for soil moisture standard devia-
tion and skewness is higher for a given mean. Previous studies such as
Andrew and Günter (1999) and Famiglietti et al. (2008) have shown
that as spatial extent increases, soil moisture standard deviation in-
creases.

Our results show that normalized soil moisture standard deviation is
maximum at intermediate range ( 0.5). These results are consistent
with the findings from previous studies (e.g. Famiglietti et al. (1998),
Choi and Jacobs (2007), Famiglietti et al. (2008), Rosenbaum et al.
(2012), Cho and Choi (2014)), where the relationship between standard
deviation of soil moisture with its mean was found to be downward
concave (upward convex). We note that, upper bound of variance for a
bounded random variable follows Bhatia-Davis inequality (Bhatia and
Davis, 2000),

M E E m[ ] ( [ ])( [ ] )2 (7)

where is normalized soil moisture that is bounded between M = 1 and
m = 0. The maximum possible variance is 0.25 that corresponds to

=E [ ] 0.5, while variance is zero at the two bounds. Therefore, the
upward convex relationship between mean and standard deviation/

Fig. 7. Sub-grid soil moisture probability time
series for a SMAP pixel within Turkey River basin
from April to November 2016. Top panel: Location
of SMAP pixel (highlighted red) and sub-grid area-
averaged rainfall time series; Bottom panel:
Enhanced L3 SMAP (AM: downward triangle, PM:
upward triangle) and sensor soil moisture (black)
overlayed with simulated probabilistic soil
moisture for hillslopes within SMAP pixel. (For in-
terpretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article.)

Fig. 8. Sub-grid soil moisture probability time series
for a SMAP pixel within South Fork basin from April
to November 2016. Top panel: Location of SMAP
pixel (highlighted red) and sub-grid area-averaged
rainfall; Bottom panel: Enhanced L3 SMAP (AM:
downward triangle, PM: upward triangle) and three
sensor soil moisture overlayed with simulated
probabilistic soil moisture for hillslopes within
SMAP pixel.
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Fig. 9. Probabilistic soil moisture time series for
Turkey River basin for year 2016. From top to
bottom: basin-averaged hourly rainfall, probability
of simulated 5-cm soil moisture and median soil
moisture (red line), Enhanced L3 SMAP soil
moisture boxplots (AM: dark gray, PM: light gray)
and soil moisture time series of sensors inside this
basin. (For interpretation of the references to colour
in this figure legend, the reader is referred to the
web version of this article.)

Fig. 10. Probabilistic soil moisture time series for
South Fork basin for year 2016. From top to
bottom: basin-averaged hourly rainfall, probability
of simulated 5-cm soil moisture and median soil
moisture (red line), Enhanced L3 SMAP soil
moisture boxplots (AM: dark gray, PM: light gray)
and soil moisture time series of sensors inside this
basin. (For interpretation of the references to colour
in this figure legend, the reader is referred to the
web version of this article.)

Fig. 11. Hourly soil moisture standard deviation with respect to its mean for observed (red) and simulated (black) soil moisture for (a) Turkey River basin and (b)
South Fork basin. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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variance of normalized soil moisture is its inherent statistical property.
We further compare the variations of normalized soil moisture

statistics over time using the same approach described previously for
generating results shown in Figs. 13 and 14. Fig. 15 shows model ap-
proximations for upper and lower bounds of soil moisture standard
deviation and skewness over time for Turkey River and South Fork
basins.

Soil moisture variability and skewness decreases for rainfall events
with high spatial extent. Temporal variations of standard deviation and
skewness for observations and model generally have good agreement.

As previously shown in Fig. 10, the observed sensor soil moisture
values are within the range of modeled soil moisture over time, while,
there are few instances in time where standard deviation of the ob-
servations is slightly lower than that of approximated possible standard
deviations for South Fork basin (Fig. 15c). Note that, as it is discussed
by Chaney et al. (2015), lack of soil moisture sensors in wet regions will
lead to underestimation in standard deviation compared to model es-
timations, specially over dry periods.

3.4. Spatial variability and skewness of SMAP soil moisture

Spatial statistics of upscaled model and SMAP satellite soil moisture
over Turkey River basin are also calculated. Fig. 16 shows standard
deviation and skewness of SMAP soil moisture and upscaled model soil
moisture over Turkey River basin for 65 pixels whereas each pixel
covers at least 20 hillslopes. Upward and downward triangles in this
figure correspond to ascending (PM) and descending (AM) SMAP sa-
tellite orbits, respectively. The standard deviation and skewness of
upscaled model soil moisture and SMAP satellite soil moisture over
Turkey River basin are in a similar dynamic ranges. However, the mean
values of SMAP satellite soil moisture are generally lower than mean of

upscaled model soil moisture. Compared to spatial variability of soil
moisture in basin scale, which is shown in Fig. 11a, Fig. 16a suggests
that standard deviation of upscaled model is lower due to averaging of
hillslope soil moisture over SMAP pixels that has approximate support
length of 9 km. This result is consistent with findings from Andrew and
Günter (1999) and Zarlenga et al. (2018) that showed increasing sup-
port length decreases soil moisture spatial variance. Fig. 16b shows
skewness for upscaled model and SMAP soil moisture over Turkey River
basin. There is similar trend as shown in Fig. 12a whereas skewness is
negative for wet and becomes positive in dry conditions for SMAP and
upscaled model.

As previously mentioned, we averaged the soil moisture of the
hillslopes collocated with a given SMAP pixel. Although averaging as an
upscaling approach shows comparable results in terms of soil moisture
variability, however as Njoku and Entekhabi (1996) suggested, due to
horizontal heterogeneities within satellite footprint, the retrieved
“average” soil moisture of satellite remote sensing, in most of the cases
may not be representative of the spatial average of soil moisture. Fur-
ther studies on this aspect using data from field campaigns such as
SMAPVEX campaigns can help in understanding the spatial aggregation
scheme of the satellite.

4. Summary & conclusions

In this study, we focused on the parameterization of dry-down and
wetting phases of surface soil moisture and extraction of the parameter
distributions for each phase using 31 rainfall and soil moisture mea-
surements over two basins. We used the extracted statistical informa-
tion from soil moisture sensors and we simulated surface soil moisture
at each hillslope by bringing higher resolution information on soil
properties and rainfall. We compared observed, modeled and SMAP

Fig. 12. Hourly soil moisture skewness with respect to its mean for the observed (red) and simulated (black) soil moisture for (a) Turkey River basin and (b) South
Fork basin. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Normalized soil moisture standard devia-
tion with respect to its mean for observation sensors
(red) and simulated soil moisture for groups of
hillslopes (black) for (a) Turkey River basin (b)
South Fork basin. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)
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satellite soil moisture estimates over the study period. Furthermore, we
investigated sub-grid and basin-scale soil moisture variability. Taking
all the above-mentioned points into consideration, the following con-
clusions can be drawn:

• SMAP soil moisture responded to rainfall events while generally it
increased less than observed and modeled soil moisture for the study
period. In most of the cases, SMAP underestimated soil moisture
during dry-down periods. There were only few cases where SMAP
soil moisture was slightly higher than observed and modeled soil

moisture.
• Satellite soil moisture retrievals are sensitive to VWC (vegetation

water content). SMAP uses a 10-year (2000–2010) climatological
average for VWC which is derived from MODIS (Kim, 2013). SMAP
estimates for Turkey River basin were slightly higher than South
Fork. Part of this could be due to less cropland proportion in Turkey
River basin (56%) compared to South Fork (88%).

• Field observations of soil moisture for the two basins corresponded
very well with the modeled soil moisture where they lie inside the
range of simulated soil moisture for 2016. Moreover, standard

Fig. 14. Normalized soil moisture skewness with respect to its mean for observation sensors (red) and simulated soil moisture for groups of hillslopes (black) in (a)
Turkey River basin (b) South Fork basin. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Temporal variations of normalized soil moisture standard deviation ( [ ]) and skewness (G [ ]) with respect to its mean for 15 and 16 observation sensors
(red) and simulated soil moisture for groups of 15 and 16 hillslopes (black) for Turkey River (a & b) and South Fork (c & d) basins. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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deviation and skewness of the two watersheds exhibited different
behaviors from each other, originating from different soil properties
and wetness, which was captured by the proposed model, thus de-
monstrating the model skill in replicating the soil moisture statistics.

• In theory, for two extreme cases of very wet and dry conditions with
large spatial extent over the basins, the distribution of soil moisture
for a given basin should approach to distributions of soil porosity
and residual soil moisture over the study area.

• Our results indicate that for dry, wet and medium soil moisture
conditions, soil moisture skewness become positive, negative and
close to zero, respectively, which is consistent with findings from
previous studies (e.g. Cho and Choi (2014), Famiglietti et al.
(1997)).

• We show that as the number of hillslopes/samples, for which the
statistics are calculated, increases, for a given mean soil moisture,
uncertainty in standard deviation and skewness decreases.

• Spatial variability and skewness of the upscaled model soil moisture
is found to be comparable with SMAP soil moisture over Turkey
River basin suggesting that averaging over larger support length
decreases variability.

The relationship between soil moisture variability with its mean
from soil moisture sensors and the proposed model implies that un-
certainty in soil moisture for two cases of wet and dry conditions de-
creases to values close to zero. This relationship could be used as an
insight for inferring the information content of the satellite soil
moisture estimations and its applications.

We have compared our results with satellite soil moisture in terms
of spatial variability in basin scale and in probabilistic sense for sub-
grid scale. Further research is needed for connecting the information
content of satellite estimations to field-scale or hillslope-scale soil
moisture while analysis of data from field campaigns could be helpful
with this respect.

In this study, we only addressed the surface soil moisture dynamics
which is more relevant to satellite soil moisture. Our methodology
could be used in basins that have soil moisture observations, such as
international soil moisture networks (Dorigo et al., 2011), and ground-
based radar rainfall (Zhang et al., 2016; Harrison et al., 2009) or sa-
tellite rainfall products (e.g. Huffman et al. (2015)) for estimating
basin-scale or satellite soil moisture sub-grid variability.

The main limitation of our study is that its application depends on
availability of recent historical soil moisture sensor, rain gauge data for
analysis and fine resolution radar rainfall data for simulations.

Future studies developed by this methodology could account for
longer time periods, the errors in radar rainfall and uncertainty in soil
properties for more accurate depiction of basin and sub-grid soil
moisture distributions. Also, our study demonstrated the importance of

field observations for further understanding of the surface soil moisture
variability. This methodology could be expanded to lower soil layers,
by extracting statistical information from soil moisture observations at
each depth and coupling between them, for partitioning of rainfall to
runoff and more specifically, drought and flood forecasting.

CRediT authorship contribution statement

Navid Jadidoleslam: Conceptualization, Methodology, Software,
Validation, Formal analysis, Data curation, Writing - original draft,
Writing - review & editing, Visualization, Investigation. Ricardo
Mantilla: Conceptualization, Methodology, Resources, Writing - review
& editing, Supervision, Funding acquisition. Witold F. Krajewski:
Conceptualization, Resources, Writing - review & editing, Supervision,
Project administration, Funding acquisition. Michael H. Cosh: Writing
- review & editing, Data curation.

Declaration of Competing Interest

None.

Acknowledgements

This study is funded by NASA SUSMAP (Science Utilization of the
Soil Moisture Active-Passive Mission) program with Grant No. “15-
0104” and Iowa Flood Center at The University of Iowa. First author
would like to thank Radoslaw Goska at Iowa Flood Center for helping
with data preparation. USDA is an equal opportunity provider and
employer. Authors gratefully acknowledge the comments and sugges-
tions of anonymous reviewers.

References

Babaeian, Ebrahim, Sadeghi, Morteza, Jones, Scott B., Montzka, Carsten, Vereecken,
Harry, Tuller, Markus, 2019. Ground, proximal and satellite remote sensing of soil
moisture. Rev. Geophys. https://doi.org/10.1029/2018RG000618. pp.
2018RG000618.

Beven, K., Germann, P.F., 1982. Macropores and water flows in soils. ISSN 00431397.
Bhatia, Rajendra, Davis, Chandler, 2000. A better bound on the variance. Am. Math. Mon.

107 (4), 353–357. https://doi.org/10.2307/2589180. ISSN 00029890.
Boone, Richard D., Nadelhoffer, Knute J., Canary, Jana D., Kaye, Jason P., 1998. Roots

exert a strong influence on the temperature sensitivity of soil respiration. Nature 396
(6711), 570–572. https://doi.org/10.1038/25119. ISSN 00280836.

Brocca, L., Tullo, T., Melone, F., Moramarco, T., Morbidelli, R., 2012. Catchment scale
soil moisture spatial-temporal variability. J. Hydrol. 422-423, 63–75. https://doi.
org/10.1016/j.jhydrol.2011.12.039. ISSN 00221694.

Brocca, L., Zucco, G., Mittelbach, H., Moramarco, T., Seneviratne, S.I., 2014. Absolute
versus temporal anomaly and percent of saturation soil moisture spatial variability
for six networks worldwide. Water Resour. Res. 50 (7), 5560–5576. https://doi.org/
10.1002/2014WR015684. ISSN 00431397.

Brocca, Luca, Ciabatta, Luca, Massari, Christian, Camici, Stefania, Tarpanelli, Angelica,
2017. Soil moisture for hydrological applications: open questions and new

Fig. 16. (a) Standard deviation and (b) skewness of the upscaled model and SMAP soil moisture over Turkey river basin for 65 SMAP pixels. Upward and downward
triangles correspond to AM and PM swaths of SMAP satellite, respectively.

N. Jadidoleslam, et al. Journal of Hydrology 576 (2019) 85–97

95

https://doi.org/10.1029/2018RG000618
https://doi.org/10.1029/2018RG000618
https://doi.org/10.2307/2589180
https://doi.org/10.1038/25119
https://doi.org/10.1016/j.jhydrol.2011.12.039
https://doi.org/10.1016/j.jhydrol.2011.12.039
https://doi.org/10.1002/2014WR015684
https://doi.org/10.1002/2014WR015684


opportunities. Water 9 (2). https://doi.org/10.3390/w9020140. ISSN 2073-4441.
Campbell Scientific Inc., 2012. CS650 and CS655 Water Content Reflectometers

Instruction Manual. pp. 56. URL:www.campbellsci.com.
Chan, Steven K., Bindlish, Rajat, O’Neill, Peggy E., Njoku, Eni, Jackson, Tom, Colliander,

Andreas, Chen, Fan, Burgin, Mariko, Dunbar, Scott, Piepmeier, Jeffrey, Yueh, Simon,
Entekhabi, Dara, Cosh, Michael H., Caldwell, Todd, Walker, Jeffrey, Wu, Xiaoling,
Berg, Aaron, Rowlandson, Tracy, Pacheco, Anna, McNairn, Heather, Thibeault, Marc,
Martinez-Fernandez, Jose, Gonzalez-Zamora, Angel, Seyfried, Mark, Bosch, David,
Starks, Patrick, Goodrich, David, Prueger, John, Palecki, Michael, Small, Eric E.,
Zreda, Marek, Calvet, Jean Christophe, Crow, Wade T., Kerr, Yann, 2016. Assessment
of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens. 54 (8),
4994–5007. https://doi.org/10.1109/TGRS.2016.2561938. ISSN 01962892.

Chaney, Nathaniel W., Roundy, Joshua K., Herrera-Estrada, Julio E., Wood, Eric F., 2015.
High-resolution modeling of the spatial heterogeneity of soil moisture: applications in
network design. Water Resour. Res. 51 (1), 619–638. https://doi.org/10.1002/
2013WR014964. ISSN 19447973.

Chaney, Nathaniel W., Wood, Eric F., McBratney, Alexander B., Hempel, Jonathan W.,
Nauman, Travis W., Brungard, Colby W., Odgers, Nathan P., 2016. POLARIS: a 30-
meter probabilistic soil series map of the contiguous United States. Geoderma 274,
54–67. https://doi.org/10.1016/j.geoderma.2016.03.025. ISSN 00167061.

Chaubell, Julian, Yueh, S., Entekhabi, D., Peng, J., 2016. Resolution enhancement of
SMAP radiometer data using the Backus Gilbert optimum interpolation technique. In:
2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE,
pp. 284–287. https://doi.org/10.1109/IGARSS.2016.7729065. ISBN 978-1-5090-
3332-4.

Chen, Quan, Zeng, Jiangyuan, Cui, Chenyang, Li, Zhen, Chen, Kun Shan, Bai, Xiaojing,
Jia, Xu., 2018. Soil moisture retrieval from SMAP: a validation and error analysis
study using ground-based observations over the little Washita watershed. IEEE Trans.
Geosci. Remote Sens. 56 (3), 1398–1408. https://doi.org/10.1109/TGRS.2017.
2762462. ISSN 01962892.

Cho, Eunsang, Choi, Minha, 2014. Regional scale spatio-temporal variability of soil
moisture and its relationship with meteorological factors over the Korean peninsula.
J. Hydrol. 516, 317–329. https://doi.org/10.1016/j.jhydrol.2013.12.053. ISSN
00221694.

Choi, Minha, Jacobs, Jennifer M., 2007. Soil moisture variability of root zone profiles
within SMEX02 remote sensing footprints. Adv. Water Resour. 30 (4), 883–896.
https://doi.org/10.1016/j.advwatres.2006.07.007. ISSN 03091708.

Ciach, Grzegorz J., Krajewski, Witold F., 1999. On the estimation of radar rainfall error
variance. Adv. Water Resour. 22 (6), 585–595. https://doi.org/10.1016/S0309-
1708(98)00043-8. ISSN 03091708.

Cornelissen, Thomas, Diekkrüger, Bernd, Bogena, Heye R., 2014. Significance of scale and
lower boundary condition in the 3D simulation of hydrological processes and soil
moisture variability in a forested headwater catchment. J. Hydrol. 516, 140–153.
https://doi.org/10.1016/j.jhydrol.2014.01.060. ISSN 00221694.

Dorigo, W.A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A.,
Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., Jackson, T., 2011. The
International Soil Moisture Network: a data hosting facility for global in situ soil
moisture measurements. Hydrol. Earth Syst. Sci. 15 (5), 1675–1698. https://doi.org/
10.5194/hess-15-1675-2011. ISSN 1607-7938.

Entekhabi, Dara, Rodriguez-Iturbe, Ignacio, Castelli, Fabio, 1996. Mutual interaction of
soil moisture state and atmospheric processes. J. Hydrol. 184 (1-2), 3–17. https://doi.
org/10.1016/0022-1694(95)02965-6. ISSN 00221694.

Entekhabi, Dara, Njoku, Eni G., O’Neill, Peggy E., Kellogg, Kent H., Crow, Wade T.,
Edelstein, Wendy N., Entin, Jared K., Goodman, Shawn D., Jackson, Thomas J.,
Johnson, Joel, Kimball, John, Piepmeier, Jeffrey R., Koster, Randal D., Martin, Neil,
McDonald, Kyle C., Moghaddam, Mahta, Moran, Susan, Reichle, Rolf, Shi, J.C.,
Spencer, Michael W., Thurman, Samuel W., Tsang, Leung, Zyl, Jakob Van, 2010. The
soil moisture active passive (SMAP) mission. Proc. IEEE 98 (5), 704–716. https://doi.
org/10.1109/JPROC.2010.2043918. ISSN 00189219.

Famiglietti, J.S., Devereaux, J.A., Laymon, C.A., Tsegaye, T., Houser, P.R., Jackson, T.J.,
Graham, S.T., Rodell, M., van Oevelen, P.J., 1999. Ground-based investigation of soil
moisture variability within remote sensing footprints During the Southern Great
Plains 1997 (SGP97) Hydrology Experiment. Water Resour. Res. 35 (6), 1839–1851.
https://doi.org/10.1029/1999WR900047. ISSN 00431397.

Famiglietti, J.S., Rudnicki, J.W., Rodell, M., 1998. Variability in surface moisture content
along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol. 210 (1–4), 259–281.
https://doi.org/10.1016/S0022-1694(98)00187-5. ISSN 00221694.

Famiglietti, James S., Ryu, Dongryeol, Berg, Aaron A., Rodell, Matthew, Jackson, Thomas
J., 2008. Field observations of soil moisture variability across scales. Water Resour.
Res. 44 (1). https://doi.org/10.1029/2006WR005804. ISSN 00431397.

García, Gonzalo Martínez, Pachepsky, Yakov A., Vereecken, Harry, 2014. Effect of soil
hydraulic properties on the relationship between the spatial mean and variability of
soil moisture. J. Hydrol. 516, 154–160. https://doi.org/10.1016/J.JHYDROL.2014.
01.069. ISSN 0022-1694.

Gebler, S., Hendricks Franssen, H.-J., Kollet, S.J., Qu, W., Vereecken, H., 2017. High
resolution modelling of soil moisture patterns with TerrSysMP: a comparison with
sensor network data. J. Hydrol. 547, 309–331. https://doi.org/10.1016/J.JHYDROL.
2017.01.048. ISSN 0022-1694.

Grillakis, M.G., Koutroulis, A.G., Komma, J., Tsanis, I.K., Wagner, W., Blöschl, G., 2016.
Initial soil moisture effects on flash flood generation – a comparison between basins
of contrasting hydro-climatic conditions. J. Hydrol. 541, 206–217. https://doi.org/

10.1016/j.jhydrol.2016.03.007. ISSN 00221694.
Guo, Li, Lin, Henry, 2018. Addressing Two Bottlenecks to Advance the Understanding of

Preferential Flow in Soils, 1st ed. Elsevier Inc.https://doi.org/10.1016/bs.agron.
2017.10.002. vol. 147, ISBN 9780128152836.

Hardie, Marcus, Lisson, Shaun, Doyle, Richard, Cotching, William, 2013. Determining the
frequency, depth and velocity of preferential flow by high frequency soil moisture
monitoring. J. Contam. Hydrol. 144 (1), 66–77. https://doi.org/10.1016/j.jconhyd.
2012.10.008. ISSN 18736009.

Harrison, D.L., Scovell, R.W., Kitchen, M., 2009. High-resolution precipitation estimates
for hydrological uses. Proc. Inst. Civil Eng. 162 (2), 125–135. https://doi.org/10.
1680/wama.2009.162.2.125. ISSN 1741-7589.

Huffman, George J., Bolvin, David T., Braithwaite, Dan, Hsu, Kuo, Joyce, Robert, Kidd,
Christopher, Nelkin, Eric J., Xie, Pingping, 2015. NASA Global Precipitation
Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG).
Algorithm Theoretical Basis Document (ATBD) Version 4.5, 26.

Kerr, Yann H., 2007. Soil moisture from space: where are we? Hydrogeol. J. 15 (1),
117–120. https://doi.org/10.1007/s10040-006-0095-3. ISSN 14312174.

Kim, Seungbum, 2013. Ancillary Data Report: Landcover Classification. (SMAP Science
Document no. 042).

Koster, Randal D., Dirmeyer, Paul A., Guo, Zhichang, Bonan, Gordon, Chan, Edmond,
Cox, Peter, Gordon, C.T., Kanae, Shinjiro, Kowalczyk, Eva, Lawrence, David, Liu,
Ping, Lu, Cheng Hsuan, Malyshev, Sergey, McAvaney, Bryant, Mitchell, Ken, Mocko,
David, Oki, Taikan, Oleson, Keith, Pitman, Andrew, Sud, Y.C., Taylor, Christopher
M., Verseghy, Diana, Vasic, Ratko, Xue, Yongkang, Yamada, Tomohito, 2004.
Regions of strong coupling between soil moisture and precipitation. Science 305
(5687), 1138–1140. https://doi.org/10.1126/science.1100217. ISSN 00368075.

Neelam, Maheshwari, Mohanty, Binayak P., 2015. Global sensitivity analysis of the ra-
diative transfer model. Water Resour. Res. 51 (4), 2428–2443. https://doi.org/10.
1002/2014WR016534. ISSN 19447973.

Njoku, Eni G., Entekhabi, Dara, 1996. Passive microwave remote sensing of soil moisture.
J. Hydrol. 184 (1-2), 101–129. https://doi.org/10.1016/0022-1694(95)02970-2.
ISSN 00221694.

Orchard, Valerie A., Cook, F.J., 1983. Relationship between soil respiration and soil
moisture. Soil Biol. Biochem. 15 (4), 447–453. https://doi.org/10.1016/0038-
0717(83)90010-X. ISSN 00380717.

Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-
Geiger climate classification. Hydrol. Earth Syst. Sci. 11 (5), 1633–1644. https://doi.
org/10.5194/hess-11-1633-2007. ISSN 16077938.

Qu, W., Bogena, H.R., Huisman, J.A., Vanderborght, J., Schuh, M., Priesack, E.,
Vereecken, H., 2015. Predicting subgrid variability of soil water content from basic
soil information. Geophys. Res. Lett. 42 (3), 789–796. https://doi.org/10.1002/
2014GL062496. ISSN 00948276.

Romano, Nunzio, 2014. Soil moisture at local scale: measurements and simulations. J.
Hydrol. 516, 6–20. https://doi.org/10.1016/J.JHYDROL.2014.01.026. ISSN 0022-
1694.

Rondinelli, Wesley J., Hornbuckle, Brian K., Patton, Jason C., Cosh, Michael H., Walker,
Victoria A., Carr, Benjamin D., Logsdon, Sally D., 2015. Different rates of soil drying
after rainfall are observed by the SMOS satellite and the south fork in situ soil
moisture network. J. Hydrometeorol. 16 (2), 889–903. https://doi.org/10.1175/
JHM-D-14-0137.1. ISSN 1525-755X.

Rosenbaum, U., Bogena, H.R., Herbst, M., Huisman, J.A., Peterson, T.J., Weuthen, A.,
Western, A.W., Vereecken, H., 2012. Seasonal and event dynamics of spatial soil
moisture patterns at the small catchment scale. Water Resour. Res. 48 (10). https://
doi.org/10.1029/2011WR011518. ISSN 00431397.

Ryu, Dongryeol, Famiglietti, James S., 2005. Characterization of footprint-scale surface
soil moisture variability using Gaussian and beta distribution functions during the
Southern Great Plains 1997 (SGP97) hydrology experiment. Water Resour. Res. 41
(12). https://doi.org/10.1029/2004WR003835. ISSN 00431397.

Shellito, Peter J., Small, Eric E., Colliander, Andreas, Bindlish, Rajat, Cosh, Michael H.,
Berg, Aaron A., Bosch, David D., Caldwell, Todd G., Goodrich, David C., McNairn,
Heather, Prueger, John H., Starks, Patrick J., Velde, Rogier van der, Walker, Jeffrey
P., 2016. SMAP soil moisture drying more rapid than observed in situ following
rainfall events. Geophys. Res. Lett. 43 (15), 8068–8075. https://doi.org/10.1002/
2016GL069946. ISSN 19448007.

Sivapalan, M., Beven, Keith, Wood, Eric F., 1987. On hydrologic similarity: 2. A scaled
model of storm runoff production. Water Resour. Res. 23 (12), 2266–2278. https://
doi.org/10.1029/WR023i012p02266. ISSN 19447973.

Stevens, 2018. Soil Sensor ®Users Manual.
Teuling, Adriaan J., Troch, Peter A., Mar 2005. Improved understanding of soil moisture

variability dynamics. Geophys. Res. Lett. 32 (5), 1–4. https://doi.org/10.1029/
2004GL021935. ISSN 00948276.

Topp, G.C., Davis, J.L., Annan, A.P., 1980. Electromagnetic determination of soil water
content: measurements in coaxial transmission lines. Water Resour. Res. 16 (3),
574–582. https://doi.org/10.1029/WR016i003p00574. ISSN 19447973.

Wang, Tiejun, Franz, Trenton E., Zlotnik, Vitaly A., You, Jinsheng, Shulski, Martha D.,
2015. Investigating soil controls on soil moisture spatial variability: Numerical si-
mulations and field observations. J. Hydrol. 524, 576–586. https://doi.org/10.1016/
j.jhydrol.2015.03.019. ISSN 00221694.

Western, Andrew W., Blöschl, Günter, 1999. On the spatial scaling of soil moisture. J.
Hydrol. 217 (3–4), 203–224. https://doi.org/10.1016/S0022-1694(98)00232-7.
ISSN 00221694.

N. Jadidoleslam, et al. Journal of Hydrology 576 (2019) 85–97

96

https://doi.org/10.3390/w9020140
http://www.campbellsci.com
https://doi.org/10.1109/TGRS.2016.2561938
https://doi.org/10.1002/2013WR014964
https://doi.org/10.1002/2013WR014964
https://doi.org/10.1016/j.geoderma.2016.03.025
https://doi.org/10.1109/IGARSS.2016.7729065
https://doi.org/10.1109/IGARSS.2016.7729065
https://doi.org/10.1109/TGRS.2017.2762462
https://doi.org/10.1109/TGRS.2017.2762462
https://doi.org/10.1016/j.jhydrol.2013.12.053
https://doi.org/10.1016/j.jhydrol.2013.12.053
https://doi.org/10.1016/j.advwatres.2006.07.007
https://doi.org/10.1016/S0309-1708(98)00043-8
https://doi.org/10.1016/S0309-1708(98)00043-8
https://doi.org/10.1016/j.jhydrol.2014.01.060
https://doi.org/10.5194/hess-15-1675-2011
https://doi.org/10.5194/hess-15-1675-2011
https://doi.org/10.1016/0022-1694(95)02965-6
https://doi.org/10.1016/0022-1694(95)02965-6
https://doi.org/10.1109/JPROC.2010.2043918
https://doi.org/10.1109/JPROC.2010.2043918
https://doi.org/10.1029/1999WR900047
https://doi.org/10.1016/S0022-1694(98)00187-5
https://doi.org/10.1029/2006WR005804
https://doi.org/10.1016/J.JHYDROL.2014.01.069
https://doi.org/10.1016/J.JHYDROL.2014.01.069
https://doi.org/10.1016/J.JHYDROL.2017.01.048
https://doi.org/10.1016/J.JHYDROL.2017.01.048
https://doi.org/10.1016/j.jhydrol.2016.03.007
https://doi.org/10.1016/j.jhydrol.2016.03.007
https://doi.org/10.1016/bs.agron.2017.10.002
https://doi.org/10.1016/bs.agron.2017.10.002
https://doi.org/10.1016/j.jconhyd.2012.10.008
https://doi.org/10.1016/j.jconhyd.2012.10.008
https://doi.org/10.1680/wama.2009.162.2.125
https://doi.org/10.1680/wama.2009.162.2.125
https://doi.org/10.1007/s10040-006-0095-3
https://doi.org/10.1126/science.1100217
https://doi.org/10.1002/2014WR016534
https://doi.org/10.1002/2014WR016534
https://doi.org/10.1016/0022-1694(95)02970-2
https://doi.org/10.1016/0022-1694(95)02970-2
https://doi.org/10.1016/0038-0717(83)90010-X
https://doi.org/10.1016/0038-0717(83)90010-X
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.1002/2014GL062496
https://doi.org/10.1002/2014GL062496
https://doi.org/10.1016/J.JHYDROL.2014.01.026
https://doi.org/10.1016/J.JHYDROL.2014.01.026
https://doi.org/10.1175/JHM-D-14-0137.1
https://doi.org/10.1175/JHM-D-14-0137.1
https://doi.org/10.1029/2011WR011518
https://doi.org/10.1029/2011WR011518
https://doi.org/10.1029/2004WR003835
https://doi.org/10.1002/2016GL069946
https://doi.org/10.1002/2016GL069946
https://doi.org/10.1029/WR023i012p02266
https://doi.org/10.1029/WR023i012p02266
https://doi.org/10.1029/2004GL021935
https://doi.org/10.1029/2004GL021935
https://doi.org/10.1029/WR016i003p00574
https://doi.org/10.1016/j.jhydrol.2015.03.019
https://doi.org/10.1016/j.jhydrol.2015.03.019
https://doi.org/10.1016/S0022-1694(98)00232-7
https://doi.org/10.1016/S0022-1694(98)00232-7


Western, Andrew W., Zhou, Sen-Lin, Grayson, Rodger B., McMahon, Thomas A., Blöschl,
Günter, Wilson, David J., 2004. Spatial correlation of soil moisture in small catch-
ments and its relationship to dominant spatial hydrological processes. J. Hydrol. 286
(1-4), 113–134. https://doi.org/10.1016/j.jhydrol.2003.09.014. ISSN 00221694.

Yang, Kai, Wang, Chenghai, Bao, Hongyan, 2016. Contribution of soil moisture variability
to summer precipitation in the Northern Hemisphere. J. Geophys. Res. 121 (20).
https://doi.org/10.1002/2016JD025644. 12,108–12,124. ISSN 2169897X.

Yang, Yang, Dou, Yanxing, Liu, Dong, An, Shaoshan, 2017. Spatial pattern and hetero-
geneity of soil moisture along a transect in a small catchment on the Loess Plateau. J.
Hydrol. 550, 466–477. https://doi.org/10.1016/j.jhydrol.2017.05.026. ISSN

00221694.
Zarlenga, A., Fiori, A., Russo, D., 2018. Spatial variability of soil moisture and the scale

issue: a geostatistical approach. Water Resour. Res. 54 (3), 1765–1780. https://doi.
org/10.1002/2017WR021304. ISSN 0043-1397.

Zhang, Jian, Howard, Kenneth, Langston, Carrie, Kaney, Brian, Qi, Youcun, Tang, Lin,
Grams, Heather, Wang, Yadong, Cockcks, Stephen, Martinaitis, Steven, Arthur, Ami,
Cooper, Karen, Brogden, Jeff, Kitzmillller, David, 2016. Multi-Radar Multi-Sensor
(MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull.
Am. Meteorol. Soc. 97 (4), 621–638. https://doi.org/10.1175/BAMS-D-14-00174.1.
ISSN 00030007.

N. Jadidoleslam, et al. Journal of Hydrology 576 (2019) 85–97

97

https://doi.org/10.1016/j.jhydrol.2003.09.014
https://doi.org/10.1002/2016JD025644
https://doi.org/10.1016/j.jhydrol.2017.05.026
https://doi.org/10.1016/j.jhydrol.2017.05.026
https://doi.org/10.1002/2017WR021304
https://doi.org/10.1002/2017WR021304
https://doi.org/10.1175/BAMS-D-14-00174.1
https://doi.org/10.1175/BAMS-D-14-00174.1

	Data-driven stochastic model for basin and sub-grid variability of SMAP satellite soil moisture
	Introduction
	Materials and methods
	Study area
	Data
	Field measurements
	Radar rainfall &#x200B;&&#x200B; satellite soil moisture
	Soil properties

	Methods
	Dry-down periods
	Wetting phase
	Numerical modeling


	Results and discussions
	SMAP sub-grid soil moisture
	Basin-scale soil moisture
	Standard deviation and skewness
	Spatial variability and skewness of SMAP soil moisture

	Summary &#x200B;&&#x200B; conclusions
	CRediT authorship contribution statement
	mk:H1_19
	Acknowledgements
	References




